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Adolescence is a time of significant neural and behavioral change with remarkable development in social, emotional, and cognitive skills.
It is also a time of increased exploration and risk-taking (e.g., drug use). Many of these changes are thought to be the result of increased
reward-value coupled with an underdeveloped inhibitory control, and thus a hypersensitivity to reward. Perturbations during adoles-
cence can alter the developmental trajectory of the brain, resulting in long-term alterations in reward-associated behaviors. This review
highlights recent developments in our understanding of how neural circuits, pubertal hormones, and environmental factors contribute
to adolescent-typical reward-associated behaviors with a particular focus on sex differences, the medial prefrontal cortex, social reward,
social isolation, and drug use. We then introduce a new approach that makes use of natural adaptations of seasonally breeding species to
investigate the role of pubertal hormones in adolescent development. This research has only begun to parse out contributions of the many
neural, endocrine, and environmental changes to the heightened reward sensitivity and increased vulnerability to mental health disor-
ders that characterize this life stage.
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Introduction
Adolescence can be both an exciting and tumultuous time. It
comprises the formative years during which individuals reach
sexual maturity and develop social, emotional, and cognitive
skills needed as individuals move toward independence and
adulthood (Spear, 2000). It is a time of increased exploration, but
this exploration often includes increased sensation seeking and
the initiation of drug use (Steinberg, 2004; Lipari and Jean-
Francois, 2013), which could contribute to the high percentage of
preventable deaths among teens (Miniño, 2010). It is also a time
of increased vulnerability to stress and the emergence of several
psychiatric and behavioral disorders (e.g., schizophrenia, depres-
sion, eating disorders) (Kessler et al., 2005). Hence, research into
the neurobiological underpinnings of adolescence is important
for basic understanding of normative social, emotional, repro-
ductive, and cognitive development as well as for understanding,
prevention, and treatment of health risks and disorders that char-
acterize this life stage.

The reorganization of the reward circuitry during adolescence
is one factor that is integral to adolescent development and

increased vulnerability to disease (Luciana, 2013; Doremus-
Fitzwater and Spear, 2016). This process is driven by complex
interactions between neural pathways, endocrine axes, and envi-
ronmental stimuli to produce a functional mesocorticolimbic
reward system in adulthood. Hence, it is imperative to determine
how these factors act independently and in concert to shape the
mesocorticolimbic reward circuitry during adolescence. This
review highlights research on interactions between the mesocor-
ticolimbic dopamine (DA) system, pubertal hormones, and en-
vironmental perturbations (drug use and social stress) and their
effects on cognitive and social adolescent development.

Puberty-dependent and puberty-independent
adolescent development
Puberty and adolescence both refer to the transition from child-
hood to adulthood, but these terms are not equivalent. Puberty is
reserved for physiological and behavioral changes associated with
the attainment of reproductive competence (e.g., activation of
the hypothalamic-pituitary-gonadal [HPG] axis, appearance of
secondary sex characteristics, and onset of sexual interest and
mating behaviors). Adolescence is a broader term that includes
puberty as well as nonreproductive traits (e.g., social, emotional,
and cognitive development). Reproductive hormones, however,
can have widespread effects, and the development of several non-
reproductive adolescent traits can also be driven by activation of
the HPG axis at puberty (puberty-dependent; e.g., ethanol intake,
anxiety-related behaviors) (Primus and Kellogg, 1989, 1990;
Vetter-O’Hagen and Spear, 2011). The different physiological,
anatomical, and temporal changes of puberty between males and
females can also lead to the emergence of sex differences during
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adolescence (Schulz et al., 2009). Other adolescent traits,
however, develop independently of HPG activation and merely
coincide with pubertal development (puberty-independent; e.g.,
social play, aggression) (Whitsett, 1975; Smith et al., 1996; Wom-
mack and Delville, 2007). Sex differences may also manifest in
puberty-independent traits due to organizational actions of perina-
tal hormones or direct actions of genes on the sex chromosomes
(Arnold, 2017). This puberty-dependent versus puberty-inde-
pendent distinction is important because many neuropsychiatric
and behavioral disorders arise during adolescence, exhibit strik-
ing sex differences, and are impacted by pubertal hormones as
well as nonpubertal factors (Fombonne, 2009; Graber, 2013;
Trotman et al., 2013). Given that the mesocorticolimbic DA
pathway is sexually dimorphic (Becker, 2009) and regulated by
gonadal hormones in adults (Kuhn et al., 2010; Becker et al.,
2012), a central question is whether adolescent development of
reward-related behaviors and circuitry is puberty-dependent or
puberty-independent.

Sex differences in reward and reward-related circuitry
Studies in humans and laboratory animals generally support the
notion that adolescents are more sensitive to reward than adults.
This is behaviorally manifest in multiple ways, including elevated
levels of sensation seeking and risk taking, as well as reduced
inhibitory control, which are maximal during the early to mid-
adolescent period (Burnett et al., 2010; Andrzejewski et al., 2011;
Burton and Fletcher, 2012; Urošević et al., 2012; Collado et al.,
2014). In laboratory rodents, heightened reactivity to drug re-
wards has also been demonstrated (Doremus et al., 2005; Levin et
al., 2007; Anker and Carroll, 2010), although this might depend
on the drug or other procedural factors (Doremus-Fitzwater and
Spear, 2016). When gender or sex is considered, an even more
nuanced picture emerges. For example, compared with males,
females have a relatively earlier and lower magnitude peak in
sensation seeking during mid-adolescence that is followed by a
more rapid decline to stability by early adulthood (Shulman et al.,
2015). In this comprehensive, longitudinal study, it was also
demonstrated that impulse control improved steadily following
early adolescence, but males remained more impulsive than fe-
males through their mid-20s. In rats, male adolescents exhibit
greater intake and motivation for palatable food that is either
calorie dense (sweetened condensed milk) (Friemel et al., 2010)
or calorie devoid (Marshall et al., 2017), compared with adults.
However, this age-dependent difference in reward sensitivity was
not apparent in female rats (Marshall et al., 2017). Using food-
restricted rats trained to associate a tone with delivery of a sucrose
solution, Hammerslag and Gulley (2014) found that the effects of
age and sex were dependent on the characteristics of the behavior
being measured. Specifically, females exhibited enhanced devel-
opment of stimulus-directed behavior in that both adult and
adolescent females acquired Pavlovian approach more quickly
than males. Adolescents of both sexes, however, had weaker ex-
pression of goal-directed behavior (i.e., entries into the sucrose
delivery trough) and were less sensitive to reward devaluation
than adults.

Recent work has also highlighted gender and sex differences in
neural development of reward-related brain circuits that may
play an important role in these age and gender/sex differences in
behavior. In the striatum, adolescent boys lag behind as they
reach peak striatal volume at �15 years of age compared with 12
for girls (Raznahan et al., 2014). Structural development in the
cortex also appears relatively delayed in boys compared with girls,
although exceptions include a more rapid reduction in the thick-

ness of the dorsolateral PFC in males (Raznahan et al., 2010).
Many of these adolescent cortical changes are associated with
adrenal and/or gonadal markers of pubertal maturation, often in
a sex-dependent manner (e.g., Herting et al., 2014, 2017). In the
rat mPFC, there are significant decreases in neuron number
(Markham et al., 2007), dendritic complexity (Koss et al., 2014),
and synapse number (Drzewiecki et al., 2016) between adoles-
cence and adulthood. At least some of these changes are more
pronounced in females compared with males and are closely
linked to puberty onset (Willing and Juraska, 2015). In the core
and shell regions of the NAc, these “pruning” processes and the
emergence of adult-like morphological features appear to occur
much earlier and well before the onset of puberty (Tepper et al.,
1998; Lee and Sawatari, 2011).

Development of the PFC during adolescence
The mPFC is a crucial regulator of reward-directed behaviors and
likely contributes to cognitive development during adolescence.
As a major component of the mesocorticolimbic DA pathway, it
receives dopaminergic projections from the VTA and sends key
glutamatergic projections to the NAc, a key integrator of reward
processing (Albertin et al., 2000; McGinty and Grace, 2009;
Hamel et al., 2017; Morrison et al., 2017). These regions form a
larger circuitry that includes the BLA and ventral hippocampus,
among others (Fig. 1). This circuit acts in concert to modulate
dopaminergic and glutamatergic tone integrated by the NAc in
response to salient stimuli. Loss or reduction of signaling within
the PFC in humans has been associated with numerous psychiat-
ric disorders, including anxiety and depression (Ressler and May-
berg, 2007) and substance use disorders (Volkow et al., 2010) in
adulthood. Similar effects have been observed in rodent models
where exposure to stress or drugs of abuse can influence signaling
between the PFC and NAc, resulting in addiction-related be-
haviors (MacAskill et al., 2014) or depressive-related behaviors
(Covington et al., 2010; Vialou et al., 2014; Bagot et al., 2015). For
example, repeated exposure to cocaine in adult mice decreases
the PFC inputs to D1 DA receptor containing medium spiny
neurons in the NAc (MacAskill et al., 2014).

One of the most dramatic brain changes occurring during
adolescence is the unfolding of DA connectivity in the mPFC. In
contrast to DA projections to limbic regions (e.g., NAc) and cor-
tical innervation of other monoamines (e.g., norepinephrine and
serotonin) that reach adult density levels early in life (Coyle and
Molliver, 1977; Levitt and Moore, 1979; Lidov et al., 1980; Benes
et al., 2000; Diamond, 2002), DA projections to the mPFC do not
fully mature until early adulthood (Kalsbeek et al., 1988; Benes et
al., 2000; Manitt et al., 2011; Naneix et al., 2012). In rodent mod-
els, the number of dopaminergic fibers in the mPFC increases
linearly between the juvenile period (postnatal day [P] 25) and
young adulthood, with the most prominent increases occurring
between the late juvenile period and early adulthood (Naneix et
al., 2012; Willing et al., 2017). Interestingly, this is not a rodent-
specific phenomenon as protracted mesocortical DA develop-
ment occurs in nonhumans primates and most likely in humans
(Rosenberg and Lewis, 1994; Lambe et al., 2000), paralleling cog-
nitive maturation.

In addition to changes in dopaminergic projections in ad-
olescence, changes in dopaminergic receptor expression are
prevalent throughout the mesocorticolimbic system, which
may underlie the altered sensitivity to rewarding stimuli. In the
NAc and dorsal striatum, DA D1 and D2 receptor expression
peaks during adolescence (P40), then declines to reach adult lev-
els �P80 (Andersen et al., 2000). In the PFC of rats, there is also
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a selective decrease of cells expressing D1 receptors that project to
the NAc between P44 and adulthood (Brenhouse et al., 2008).
However, there may be important species differences in these
receptor changes across adolescence (Pokinko et al., 2017).

Measures of functional connectivity in humans have further
elucidated the widespread changes between the PFC and subcor-
tical structures throughout adolescence, with some evidence sug-
gesting that a relatively stable network connectivity state does not
occur until at least the mid-20s (Dosenbach et al., 2010). The
potential relevance of these changes for behavior is not fully un-
derstood, but decreases in the functional coupling between sub-
regions of the PFC and the NAc have been linked with decreases
in self-reported risky behavior across adolescence (Qu et al.,
2015). Interestingly, studies of PFC activation in humans have
revealed sex differences in function that go beyond what might be
expected from the anatomical correlates. One such functional
development is resting state functional connectivity, which de-
scribes the degree of synchrony between two different brain re-
gions or between nearby areas within a brain region. In the
dorsolateral PFC, resting state functional connectivity between
the hemispheres tends to increase with age in males but decreases
with age in females (Zuo et al., 2010).

These data demonstrate that the mesocorticolimbic DA path-
way undergoes vast developmental changes during adolescence
both in fiber projections to the PFC and in sensitivity to DA
within the NAc, dorsal striatum, and PFC target areas through
altered receptor expression. Some of these developmental changes
seem to occur independent of the gonadal hormone surge asso-
ciated with puberty (Andersen et al., 2000; Willing et al., 2017).
Although tyrosine hydroxylase-immunoreactivity in the PFC in-
creases across adolescence, this increase does not appear to be
associated with markers of pubertal status (Willing et al., 2017).
Preventing the pubertal rise in gonadal hormones by gonadec-
tomy on P28 does not alter the adolescent (P40) or adult (P80)
levels of D1 or D2 receptor expression in the rat striatum (Ander-
sen et al., 2000). Finally, many developmental changes occur be-
fore puberty (e.g., adult-like morphological features of striatal
neurons) (Tepper et al., 1998; Lee and Sawatari, 2011). For many
measures, more research is needed to answer this question. The
influence of gonadal hormones on reward-associated behaviors
and the mesocorticolimbic pathway in adults (Becker et al., 2012)
suggests at least a modulatory role during adolescence, particu-

larly with respect to the emergence of sex differences (Kuhn et al.,
2010).

Pubertal influences on mPFC adolescent development
Recent evidence suggests that, within the adolescent period, pu-
bertal onset may be particularly critical in specific aspects of
mPFC development and cognition. Previous work in rats has
documented a reduction in mPFC volume between the juvenile
and adult periods (Van Eden and Uylings, 1985), and this volu-
metric reduction may reflect a decrease in neuron number. Ste-
reological quantification of the total number of neurons in the
mPFC across adolescence revealed that the majority of neuronal
losses occur during the period of pubertal onset, particularly in
female rats (Willing and Juraska, 2015). Ovariectomy before pu-
berty prevented these neuronal losses, further suggesting a role
for pubertal hormones (Koss et al., 2015). Additionally, there are
changes in dendritic complexity and synapse number in the
mPFC during adolescence. Between P35 and P90, there is a re-
duction in dendritic spine density in both male and female rats
(Koss et al., 2014). In a recent study, Drzewiecki et al. (2016)
conducted an immunohistochemical analysis of synaptophysin
as a marker for total synapse number in the mPFC in P25, P35,
P45, P60, and P90 rats of both sexes. As expected, there was
evidence for significant synaptic pruning during adolescence. In-
terestingly, a direct comparison of prepubertal versus postpuber-
tal females at P35 and prepubertal versus postpubertal males at
P45 (corresponding to the average age of pubertal onset) revealed
that, in both sexes, postpubertal animals had significantly fewer
synapses than their prepubertal counterparts.

These structural alterations within the mPFC are associated
with changes in cognitive performance during adolescence, which
also seem to depend on the timing of puberty. These differences
in cognitive performance could reflect differences in reward pro-
cessing. Indeed, substance use disorder is often described as
maladaptive decision-making and reward learning. Given the
importance of the entire PFC in reward learning, it follows that
structural changes in adolescence result in altered cognitive per-
formance and decision making with regard to reward. Kanit et al.
(2000) found that pubertal onset alters learning strategies in spa-
tial memory tasks. However, there is a paucity of research that
accounts for a potential role for puberty, particularly on mPFC-
dependent tasks. Willing et al. (2016) have recently shown that

Figure 1. Adolescent development of the mesocorticolimbic DA pathway. A, Major brain areas and projections of the mesocorticolimbic DA pathway. B, A schematic of postnatal development of
key components of this pathway along with changes in gonadal steroid hormones and pubertal markers. Hashed lines indicate data specific to females. Developmental patterns and markers are
based on data from Tarazi and Baldessarini (2000) (NAc D1, D2 receptors); Naneix et al. (2012) and Willing et al. (2017) (PFC DA fibers); and Döhler and Wuttke (1975) and Vetter-O’Hagen and Spear
(2012a) (gonadal steroid concentrations and pubertal markers). VO, Vaginal opening; BPS, balano-preputial separation; E2, estradiol; T, testosterone.
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pubertal onset leads to better performance on an mPFC-
mediated cognitive flexibility component of a Morris Water
Maze task in both male and female rats. Path length to the novel
platform location was shorter in postpubertal males and females,
and prepubertal animals spent a greater amount of time swim-
ming in the quadrant where the platform was initially located,
suggesting a deficit in cognitive flexibility that subsides after pu-
bertal onset. Future studies are needed to determine whether
these temporal associations with pubertal status reflect pubertal
mechanisms or coincidental timing. Recent studies in female
mice support the former. Preventing the pubertal rise in ovarian
hormones by prepubertal gonadectomy blocks adolescent matu-
ration of inhibitory neurotransmission in the frontal cortex
(Piekarski et al., 2017). Conversely, advancing puberty by prepu-
bertal estradiol and progesterone treatment accelerates the mat-
uration of this inhibitory tone in the frontal cortex and
developmental increases in cognitive flexibility (Piekarski et
al., 2017).

Disruption of adolescent PFC development by drugs of abuse
The initiation of consumption of drugs of abuse is an adolescent
phenomenon, with �50% of individuals taking drugs for the first
time being below the age of 18 years (Johnston and Coplin, 1979;
Warner et al., 1995; Grant, 1997; Degenhardt et al., 2007; Elgar et
al., 2011; Currie and Wild, 2012; Leatherdale and Burkhalter,
2012; Swendsen et al., 2012). Starting drug use during adoles-
cence increases the risk of abuse across the lifetime, with greater
vulnerability conferred to younger initiates (Robins and Przy-
beck, 1985; Grant and Dawson, 1998; Compton et al., 2007; Ha-
sin et al., 2007; McCabe et al., 2007; Chen et al., 2009; Palmer et
al., 2009; Swendsen et al., 2012). Significant efforts are being
made to develop prevention and early intervention/treatment
programs. However, the more we learn about the molecular pro-
cesses that occur in the adolescent brain and about how these may
be influenced by drugs of abuse, the more effective such pro-
grams will be.

As mentioned above, innervation of the PFC by dopaminergic
neurons from the VTA occurs during adolescence. Reynolds et al.
(2017) recently showed that, in rodents, delayed development of
the mesocortical DA innervation does not result from sprouting
of DA fibers that reach this region early in life. Instead, they
demonstrated that DA axons continue to grow from the NAc to
the PFC during adolescence. Indeed, this is the only known case
of long-distance axon growth during this late postnatal age.
Netrin-1 guidance cue receptor, DCC, controls this growth by
promoting axon targeting events in the NAc, in turn delimiting
the number of axons that continue to extend to the cortex. Alter-
ations in DCC expression in DA neurons in adolescence changes
the number of axons that continue to extend from the NAc to the
PFC and consequently the organization of DA synaptic networks
(Manitt et al., 2011, 2013; Reynolds et al., 2017). Importantly, by
orchestrating DA connectivity in adolescence, DCC receptors de-
termine the intrinsic structural and functional maturation of the
PFC itself (Manitt et al., 2011, 2013; Reynolds et al., 2017). These
findings indicate that (1) the path finding trajectory of DA axons
remains vulnerable throughout adolescence, and (2) environ-
mental factors that alter DCC receptor expression in DA neurons
in adolescence could profoundly influence PFC development.

Indeed, exposure to amphetamine in early adolescence at
doses that are equivalent to those abused in humans downregu-
lates DCC receptor expression in DA neurons. In turn, this same
amphetamine regimen leads to a significant increase in the extent
of the DA projections to the PFC but depletes mesocortical axons

of presynaptic sites (Reynolds et al., 2015). These enduring effects
are not observed following adult exposure to amphetamine, in-
dicating that amphetamine in adolescence disrupts mesocortical
DA development via the DCC pathway. Consistent with the de-
terminant role that the mesocortical DA innervation plays on
cognitive maturation, we find that amphetamine in adolescence
negatively influences cognitive processing in adulthood (Reyn-
olds et al., 2015). Mice exposed to a similar amphetamine treat-
ment in adolescence, but not in adulthood, show exaggerated
salience attribution to stimuli paired with the drug and deficits in
behavioral inhibition. Age of exposure-dependent effects of am-
phetamine on cognition has also been seen in rats (Hankosky et
al., 2013; Sherrill et al., 2013) and may be sex-dependent (Ham-
merslag et al., 2014). These changes in salience attribution and
cognitive inhibition resemble those observed across psychiatric
conditions of PFC dysfunction, including drug abuse.

Development of social reward during adolescence
The adolescent transition from childhood to adulthood requires
a qualitative shift in the perception of rewarding social interac-
tions (Spear, 2000). In humans, adolescence is characterized by
increases in time spent with peers and changes in the quality of
social interactions with family and peers (Larson et al., 1996).
Adolescents rely on their contemporaries for social support and
are increasingly reactive to treatment by their peers (Ladd et al.,
2014). These social relationships influence the development and
maintenance of maladaptive behaviors in adulthood (Patterson
et al., 1992; Hankin et al., 1998). Indeed, peer influence is a strong
predictor of adolescent depression (Thapar et al., 2012). This
reorganization of social structure during adolescence is necessary
for social species to develop appropriate behavioral strategies for
survival in adulthood (Gopnik et al., 2017). A close association
between adolescent social reorganization and puberty is thought
to increase exposure to genetically distinct individuals when sex-
ual behavior emerges, thereby decreasing the chance of inbreed-
ing within a social group (Lawson Handley and Perrin, 2007).

As in humans, adolescent changes in social interactions and
social structure are prevalent in rodents. Adolescent rats place a
greater value on peer-directed activities (Pellis and Pellis, 2017)
and exhibit a greater preference for social stimuli in a conditioned
place preference (CPP) test compared with adults (Douglas et al.,
2004; Yates et al., 2013), suggesting that the adolescent rodent
brain is highly sensitive to social reward. It is thought that adole-
scent-specific social experiences result in permanent neural and
hormonal changes that coalesce in cognitive strategies, which
lead to effective coping in adulthood (Spear, 2000).

The limbic system is a known regulator of social interaction
and social reward. In particular, the amygdala is critically impor-
tant for the integration of emotional stimuli and regulates emo-
tional and motivated behaviors (Wassum and Izquierdo, 2015).
The BLA in particular has been studied extensively for its role in
reward because it is thought to be important in assessing/assign-
ing value to stimuli and is a key regulator of social interactions.
Activation of the BLA reduces social interaction (Sanders and
Shekhar, 1995), whereas inhibition of glutamatergic or GABAe-
rgic transmission within the BLA increases social interactions
(Sajdyk and Shekhar, 1997; Paine et al., 2017). Projections from
the BLA to PFC likely contribute to this social regulation as selec-
tive activation of these projections decreases social behaviors
(Felix-Ortiz et al., 2016). In addition to its reciprocal glutamater-
gic projections with the PFC, the BLA projects to the NAc and
receives dopaminergic projections from the VTA (Wassum and
Izquierdo, 2015). Each of these circuits develops at different
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stages (Bouwmeester et al., 2002a, b; Cunningham et al., 2002;
Caballero et al., 2014; Wassum and Izquierdo, 2015; Arruda-
Carvalho et al., 2017). For example, projections from the PFC to
BLA are established between P10 and P15 (Bouwmeester et al.,
2002b; Arruda-Carvalho et al., 2017), but the reciprocal projec-
tions (BLA to PFC) are established a few days earlier (Bouw-
meester et al., 2002a; Cunningham et al., 2002). The amygdalar
circuit (including NAc, VTA, PFC, and ventral hippocampus)
develops during the juvenile/early adolescent period, and syn-
apses are established by the second or third postnatal week. Al-
though projections within the amygdalar circuitry are established
before adolescence, recent evidence suggests that the PFC to BLA
projections undergo significant synaptic strengthening (as mea-
sured by IPSC/EPSC ratio) on P30 (Arruda-Carvalho et al.,
2017), and there are more PFC to BLA projections on P31 com-
pared with P24 and P45 (Pattwell et al., 2016), suggesting that this
point in adolescence may be a crucial developmental period for
limbic structures. The amygdala (Meaney et al., 1981; Meaney
and McEwen, 1986; Jessen et al., 2010), and BLA in particular
(Trezza et al., 2012; Achterberg et al., 2015), are important regu-
lators of social play, a prominent juvenile social behavior that is
important for social, emotional, and cognitive development (Pel-
legrini, 1988; Vanderschuren et al., 1997; van den Berg et al.,
1999; Baarendse et al., 2013). Notably, the PFC-BLA synaptic
development coincides with the developmental rise in this behav-
ior (Panksepp, 1981).

Gonadal hormonal influences on adolescent reward valiance
Social interactions in adolescence are not limited to same sex
conspecifics. As juveniles proceed through adolescence, interac-
tions with opposite sex conspecifics, and ultimately copulation,
become motivating and rewarding stimuli. The performance of
sexual behavior may increase risk of aggressive and predatory
encounter (Kavaliers and Choleris, 2001), but is also a strong
natural reward (Trezza et al., 2011). Thus, it is possible that the
neural developmental processes that promote adaptive reward-
ing social interactions also contribute to risk taking behavior that
increases during human adolescence. As mentioned above, ado-
lescent rodents display a greater preference for social stimuli in a
CPP paradigm (Douglas et al., 2004; Yates et al., 2013). However,
attempts to compare reactions of juvenile and adult animals to
potentially rewarding social interactions can be confounded by
the conspecific stimulus animal behaving differently toward ju-
veniles and adults. This concern is alleviated by using a social cue,
such as opposite sex odors, which can be presented in place of the
behaving stimulus animal. The male Syrian hamster provides a
unique model for understanding how the perception of poten-
tially rewarding social cues matures across adolescence because
their attraction to female vaginal secretions (VSs), which are es-
sential for adult sexual behavior, develops across adolescence
(Murphy and Schneider, 1970; Johnston, 1986).

VSs are an unconditioned reward to sex-naive adult male
hamsters in a CPP test (Bell et al., 2010). Importantly, this same
chemosensory cue is not attractive (Johnston and Coplin, 1979)
or rewarding (Bell et al., 2013b) to juvenile animals. Like the
performance of sex behavior, the rewarding perception of VSs is
dependent on circulating testosterone: adult animals that were
gonadectomized 10 weeks prior did not show CPP to VSs (Bell
and Sisk, 2013). This suggests that the increase in gonadal hor-
mones during puberty normally promotes this adolescent shift in
cue interpretation. Indeed, treating juvenile Syrian hamsters with
testosterone induces CPP to VS weeks earlier than in unmanipu-

lated hamsters (Bell et al., 2013a), indicating that the shift in VS
reward valence is indeed puberty-dependent.

The neural circuitry for this shift in behavior includes many of
the same brain regions and neurotransmitters involved in drugs
of abuse. The display of CPP for VSs in testosterone-treated ju-
venile animals is blocked by systemic haloperidol, a DA receptor
antagonist (Bell and Sisk, 2013). VSs induce expression of the
immediate early gene Fos throughout hypothalamic and amygdalar
brain regions normally implicated in sociosexual behavior and
chemosensory cues equally between juvenile and adult Syrian
hamsters (Romeo et al., 1998). However, adult, but not juvenile,
males show Fos responses to VS in subregions of the PFC and
dopaminergic and nondopaminergic cells in the VTA (Bell et al.,
2013b). These immature Fos responses are not transformed into
adult-like patterns by testosterone treatment of juvenile males
(Bell et al., 2013a). In parallel, testosterone treatment does not
induce sex behavior in juvenile animals (Schulz et al., 2009).
Perhaps puberty-independent maturation of the mesocortico-
limbic system is necessary for the full complement of sociosexual
behavior. Complex behaviors are mediated by a suite of brain
regions, which may be differentially hormone sensitive. As such,
major changes in behavior are likely affected by both puberty-
dependent and puberty-independent mechanisms.

Adolescent social stress affects adult reward-associated
behaviors and brain regions
Adversity during the adolescent period increases the risk for nu-
merous psychiatric disorders in adulthood, including depression
(Heim et al., 2008), anxiety (Espejo et al., 2007), substance use
disorders (Scheller-Gilkey et al., 2003), and schizophrenia
(Holtzman et al., 2013). Manipulation of the social experience in
adolescent rodents results in long-term alterations in the behav-
ioral correlates of anxiety, depression, and substance use disor-
ders (Burke et al., 2017), thereby providing a valuable model in
which to investigate the cellular and molecular underpinnings of
susceptibility to psychiatric disorders.

Specifically, adolescent social isolation stress (aSI) is com-
monly used to induce susceptibility to substance use disorders as
well as anxiety- and depression-like behaviors in adult rodents
(Burke et al., 2017). Given its prevalence as a model, it would be
beyond the scope of this review to provide a comprehensive over-
view of the effects of aSI on reward-associated development. How-
ever, this manipulation consistently enhances self-administration
and CPP for numerous drugs of abuse and natural reward in
males (Smith et al., 1997; Howes et al., 2000; Brenes and Forna-
guera, 2008; Whitaker et al., 2013), alters social and emotional
processing (Einon and Morgan, 1977; Arakawa, 2003; Lukkes et
al., 2009b), and increases fear- and anxiety-related behaviors
(Einon and Morgan, 1977; Wright et al., 1991a; Wilkinson et al.,
1994; Lukkes et al., 2009a; Chappell et al., 2013) in adult rodents.
In addition, aSI is associated with changes in gene expression and
protein throughout the mesocorticolimbic system (Lukkes et al.,
2009b, 2013; Donner et al., 2012; Hickey et al., 2012; Whitaker et
al., 2013), in neuronal development and monoaminergic activity
in the NAc, BLA, and PFC (Wright et al., 1991b; Fulford and
Marsden, 1998a, b; Brenes and Fornaguera, 2008; Brenes et al.,
2008; Lukkes et al., 2008, 2009c, 2013; Fabricius et al., 2011) and
in electrophysiological properties within the VTA, hippocampus
(HIP), and PFC (Peters and O’Donnell, 2005; Ashby et al., 2010;
Whitaker et al., 2013). Although it is clear that aSI has profound
effects on mesocorticolimbic development and function, to our
knowledge, whether these effects are dependent on the pubertal
hormone surge and how aSI might alter hormonal influences of
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mesocorticolimbic processing have not been investigated. Ship-
ping stress and immune challenge during puberty blunt the an-
tidepressant and anxiolytic effects of estradiol and alter microglia
activation in the amygdala (AMY) and HIP of adult female rats
(Ismail and Blaustein, 2013; Ismail et al., 2013; Holder and
Blaustein, 2017). This research offers intriguing evidence that at
least nonsocial stressors during adolescence can alter hormonal in-
fluences on affective behaviors and neural circuitry in adulthood.

Much of the work investigating aSI on reward-associated be-
haviors has focused on male rodents (Cooke et al., 2000) and the
traditional reward-associated brain regions, including the mPFC,
NAc, VTA, and BLA (Lukkes et al., 2009b). Nevertheless, females
are sensitive to aSI, and the mechanisms underlying their sensi-
tivity are beginning to be investigated (Burke et al., 2017). Initial
studies suggest that the effect of aSI on reward-associated behav-
iors in females is opposite from those in males. As predicted, male
mice isolated from P22-P42 display a greater preference for co-
caine in a CPP paradigm compared with nonisolates. Females,
however, show a reduced preference. aSI also reversed the sex
difference in cocaine preference (females � males under control
conditions) and markedly reduced or reversed known sex differ-
ences in baseline anxiety-like behaviors in adulthood (D. M.
Walker and E. J. Nestler, unpublished data). Current research is
investigating circuitwide transcriptomic and projection-specific
changes altered by aSI to understand how the mesocorticolimbic
circuitry is “organized” during adolescence in a sex-specific
manner.

Brain areas outside the canonical reward-associated circuitry
are also likely to play a role in sex differences in aSI, particularly
those that are hormone sensitive, sexually dimorphic, and send
projections to brain areas of the mesocorticolimbic pathway. The
medial AMY (meAMY) is larger in males than in females (Hines
et al., 1992; Kerchner et al., 1995). However, unlike most sexually
dimorphic brain regions, sex differences in volume of subnuclei
within the meAMY do not emerge until adolescence, and the
pubertal testosterone surge in males contributes to the organiza-
tion of this sex difference (De Lorme et al., 2012). This change in
meAMY structure co-occurs with changes in rewarding sociosex-
ual behaviors that are in part regulated by it (De Lorme et al.,
2012). However, little is known about the role of the meAMY in
drug-related reward (Knapska et al., 2007); and to our knowl-
edge, only one study has investigated its role in cocaine self-
administration (Kuzmin and Johansson, 1999). Additionally,

adolescent stress dysmasculinizes the meAMY: meAMY volume
and cell number are decreased in males stressed during adolescence
compared with their control counterparts, and these stressed males
are less efficient at mating (Cooke et al., 2000). Collectively, this
literature suggests that the meAMY contributes to the develop-
ment, initiation, and maintenance of sex differences in reward
and motivation. Consistent with this hypothesis, initial experi-
ments have found that aSI not only reversed known sexually
dimorphic behaviors but also reversed sex differences in gene
expression throughout the reward circuitry with the strongest
effects observed in the meAMY. Furthermore, the sex difference
in the number of projections from the meAMY to the VTA is lost
after aSI (Walker and Nestler, unpublished data), suggesting that
the emergence of many sex differences in meAMY during adoles-
cence are affected by social cues and could be crucial for the
manifestation of sex differences in motivation and reward in
adulthood.

Exploiting seasonal physiology to separate puberty-dependent
and puberty-independent influences on adolescent reward
As discussed in this review, the development of reward-associated
behaviors and circuitry is influenced by both puberty-dependent
and puberty-independent mechanisms. Disentangling contribu-
tions from puberty-dependent and puberty-independent pro-
cesses, however, is often difficult. Traditional approaches to this
question fall under two categories. The first asks whether gonadal
hormone manipulations alter the timing of adolescent develop-
ment: Does gonadectomy prevent, and hormone replacement
restore, adolescent changes? The second approach asks whether
adolescent changes correlate with chronological age or pubertal
status. This second approach is often difficult because, in most
models, puberty is tightly correlated with chronological age lead-
ing to small age differences among conspecifics in the timing of
pubertal development. Seasonally breeding species could provide
an alternate approach to investigate puberty-dependent and
puberty-independent influences on adolescent development; one
that uses natural adaptations to dissociate pubertal development
from chronological age in structurally and genetically intact ani-
mals. For many seasonally breeding rodents, offspring born early
in the breeding season (spring and early summer) undergo rapid
pubertal development to breed that same year, whereas those
born at the end of the breeding season (autumn) delay puberty
during the winter months to synchronize the onset of breeding

Figure 2. Using seasonal breeders to separate puberty-dependent and puberty-independent influences on adolescent development. A, Photoperiod regulation of puberty in male Siberian
hamsters: LDs stimulate, whereas SDs delay, testicular development. B, C, How this model can be used to determine whether the development of an adolescent trait is regulated by puberty-
dependent or puberty-independent mechanisms. Solid blue line indicates the developmental profile of a hypothetical trait for LD-reared hamsters. Dashed green line indicates the developmental
profile of a hypothetical trait for SD-reared hamsters. Delayed development of the adolescent trait in SD-reared hamsters (as in B) maintains temporal synchrony with puberty and indicates
puberty-dependent regulation. Absence of a photoperiod effect on the adolescent trait (as in C), however, dissociates the trait from puberty in SD-reared hamsters and indicates puberty-
independent regulation. ETV, Estimated testis volume. Illustration of testis data modified with permission from Paul et al. (2006).
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with the following spring (Sadleir, 1969). Day length serves as a
proximate cue for time of year in many seasonally breeding spe-
cies (Paul et al., 2008; Stevenson et al., 2017). Hence, seasonal
regulation of pubertal development can be recapitulated in the
laboratory simply by manipulating the ambient photoperiod:
long, summer-like day lengths (LDs) stimulate rapid pubertal
development, whereas short, winter-like day lengths (SDs) delay
pubertal development (Whitsett and Miller, 1982; Yellon and
Goldman, 1984; Edmonds and Stetson, 1993; Nelson et al., 1997).
In Siberian hamsters (Phodopus sungorus), SD rearing delays pu-
berty by 3–5 months (Hoffmann, 1978) (Fig. 2A). Hence, in sea-
sonal species, one can systematically control the timing of
puberty with photoperiod and ask whether the development of
nonreproductive adolescent traits is similarly delayed by SD rear-
ing (puberty-dependent; Fig. 2B) or unaffected by ambient pho-
toperiod (puberty-independent; Fig. 2C).

It should be noted that the seasonal species approach asks a
slightly different question than the gonadal hormone approach.
Manipulating gonadal hormones during adolescence directly
tests the role of increased gonadal hormones at puberty, whereas
shifting the timing of puberty with photoperiod tests the role of
pubertal activation of the entire HPG axis. Indeed, gonadectomy
does not prevent pubertal onset: activation of the hypothalamic
GnRH pulse generator and increased secretion of pituitary go-
nadotropins at puberty occur even in the absence of the gonads
(Ojeda and Terasawa, 2002). The seasonal species approach
circumvents potential confounds of the gonadal hormone ap-
proach, including early-life surgical/handling stress (Vetter-
O’Hagen and Spear, 2011; Pritchard et al., 2012; Vetter-O’Hagen
and Spear, 2012b; Farrell et al., 2016) and compensatory changes
in the brain and pituitary after removal of gonadal steroid feed-
back (Meijs-Roelofs and Kramer, 1979; Andrews and Ojeda,
1981; Bittman et al., 1996; Dubois et al., 2016). On the other
hand, photoperiod can influence more than just puberty in sea-
sonal species (Paul et al., 2008; Stevenson et al., 2017), and con-
tributions from other seasonal traits must be considered if there is
an effect of photoperiod on adolescent development (as in Fig. 2B).
This is not an issue if photoperiod does not influence the develop-
ment of the adolescent trait (as in Fig. 2C). Hence, the two ap-
proaches complement each other and are best used in combination.

Experiments using Siberian hamsters have begun to test the
seasonal species approach on the development of two reward-
associated behaviors: one thought to be regulated by puberty-
independent mechanisms: social play (Smith et al., 1996); and
another for which the data are mixed: novelty seeking (Cyrenne
and Brown, 2011; Vetter-O’Hagen and Spear, 2012a). Juvenile
rats can be conditioned to prefer a location in which they previ-
ously played (Calcagnetti and Schechter, 1992; Trezza et al.,
2009) and will work for access to a playmate (Achterberg et al.,
2016). Hence, it is not surprising that social play is regulated by
neurotransmitter systems implicated in reward, including the
mesolimbic DA pathway (Trezza et al., 2010; Achterberg et al.,
2016; Manduca et al., 2016). Novelty seeking is also regulated by
reward-related circuits and mesolimbic DA (Hooks and Kalivas,
1995; Rebec et al., 1997; Wingo et al., 2016). Both social play and
novelty seeking peak in juveniles/early adolescents and then de-
cline thereafter (Panksepp, 1981; Pellis and Pellis, 1990; Douglas
et al., 2003; Stansfield and Kirstein, 2006; Vetter-O’Hagen and
Spear, 2012a). Siberian hamsters also exhibit the same periado-
lescent declines in social play and novelty seeking when reared in
an LD photoperiod that triggers rapid pubertal development
(M. J. Paul, C. K. Probst, L. M. Brown, and G. J. de Vries, unpub-
lished data; R. F. Kyne, Q. E. Carroll, K. C. Schatz, R. Y. Bivieca,

and M. J. Paul, unpublished data). When puberty is delayed by
SD rearing, the decline in play is completed before pubertal onset
and the development of play is dissociated from puberty. The
decline in novelty seeking, however, is delayed in SD-reared Si-
berian hamsters and remains coincident with puberty. These data
suggest that the development of play is puberty-independent,
whereas that of novelty seeking is puberty-dependent. While
further research is necessary, this model provides a novel and excit-
ing approach to disentangle puberty-dependent and puberty-
independent influences on adolescent behavioral and neural
development.

Emerging themes
The factors contributing to adolescent reward are many, and we
are only beginning to understand the complex interactions be-
tween neural networks, endocrine axes, and environmental cues
that direct the development of a functioning male- and female-
typical mesocorticolimbic reward circuit. The many behavioral
changes and neuroendocrine interactions may seem chaotic, but
it is clear that adolescent development is a highly regulated and
coordinated process. In this review, we have highlighted a few
overarching themes that are beginning to emerge from the chaos:
(1) There are notable sex differences in adolescent development
that might underlie sexually dimorphic reward-associated behav-
iors in adulthood. (2) The mesocorticolimbic pathway is critical
for adolescent changes in social reward and reward learning. (3)
Reorganization of the reward circuitry, particularly the PFC, dur-
ing adolescence relies on social interactions, pubertal hormones,
as well as nonpubertal processes. (4) Adolescent reward circuitry
is highly vulnerable to social stress and drugs of abuse. Further
research is necessary for a comprehensive understanding of the
factors that regulate development of the mesocorticolimbic path-
way, those that lead to increased vulnerability to disruption, and
how this process drives developmental changes in motivation
and reward. This research would benefit from the use of multiple
approaches and models to disentangle the neural, endocrine, and
environmental influences on adolescent reward. Together, these
investigations will provide valuable insight into sex-specific psy-
chiatric and behavioral disorders that arise during adolescence
and could lead to novel avenues for treatment and prevention.
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